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Abstract

A Study of Mental Map

in Immersive Network Visualization

Mental maps represent how viewers store spatial and structural information in their mind.

The quality and detail of a mental map is critical for viewers to get a better understand-

ing of the data from a visualization presented to them. For graph visualization, where

the layout of connected nodes constitutes the “structure” of the data, facilitating the

creation of mental maps is thus important. To investigate the ability of users to create

and maintain mental maps of network structures, we design and perform an experiment

comparing the mental map creation and graph exploration with two different visualiza-

tion methods: Traditional 2D and Immersive 3D. We find that mental map formation is

easily disturbed by factors present in immersive visualization, though it may support an

improved perceived user experience and strengths in other kinds of tasks.
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Chapter 1

Introduction

Graphs are commonly used to represent relational data found in applications from social

networks and biological networks to communication networks and power grids. Study-

ing graph data is often done by visualizing graphs as node-link diagrams laid out two-

dimensionally on a 2D display. 3D graph visualization is rarely used in practice due to its

inherent occlusion problem. However, as Virtual Reality (VR) Head-Mounted Displays

(HMDs) become increasingly high-resolution and affordable, it is worth reassessing the

value of 3D graph visualization viewed with a VR HMD.

Stereoscopic displays allow users to see depth more naturally and effectively, while

more advanced HMDs also have spatial tracking that allow them to partially or entirely

negate the adverse effects of occlusion and foreshortening that can occur in 3D space.

An effective graph visualization makes the graph’s relational and structural information

of interest more accessible and memorable. Would stereoscopic 3D visualization better

facilitate perceiving such information? While occlusion is a concern, among others, a

number of studies have shown that the additional visual channel (depth) can be used

effectively for abstract data [21]. Significant research has been done surrounding graph

layout techniques that leverage a third spatial dimension [18, 19, 21]. Adding a third

spatial dimension with immersive technology not only permits real-world objects to be

modeled more accurately, but also allows more freedom and depth (literally) in the rep-

resentation of abstract objects.

Immersive visualization and analytics is an emerging field that aims to leverage the
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many benefits of mixed reality technology to information visualization, such as spatial im-

mersion, multi-sensory presentation, and increased engagement [11]. The effectiveness of

the immersion provided by VR has been explored in a wide but sometimes sparse breadth,

in terms of what techniques are used to immerse users, and in what way it may elicit some

positive gain. Our study aims to gain a better understanding of how graph visualization

may benefit from immersive technology using HMDs. We begin by experimentally study-

ing how users of 2D graph visualization versus stereoscopic 3D visualization may perceive

information and perform tasks differently. In particular, we are interested in learning if

users create and maintain mental maps of network structures, and how the mental maps

could assist their tasks. Mental maps represent how viewers store spatial and structural

information in their mind. The quality and detail of a mental map is critical for viewers

to get a good understanding of the data from a visualization presented to them. A person

who views a graph representation of a network forms a mental map over time that consists

of information about topology, relative positions, and relative directions of elements in

the graph [22]. We have designed an experiment to help characterize and understand the

mental map created over immersive visualization. We find that mental map formation is

easily disturbed by factors present in immersive visualization, though it may support an

improved perceived user experience and strengths in other kinds of tasks.
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Figure 1.1. A user interacts with a 3D graph with the HTV Vive Pro HMD and
controllers. The display mirrors the user’s view. We compare this method of graph vi-
sualization with traditional desktop 2D graph visualization to determine how it effects
users’ mental maps.
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Chapter 2

Background

Immersive environments, such as CAVEs and HMDs, have proven effective for informa-

tion visualization and data analysis. Research by Ball and North [5] shows that high

resolution tiled displays improve perception and navigation for visual tasks. Mania and

Chalmers [20] (2001) studied memory in immersive and non-immersive spaces and found

that immersion significantly improved recall for simple memory tasks. Krokos et al. [17]

show more recently (2018) that recall can be improved with VR through techniques such

as a memory palace metaphor, involving the virtual arrangement of objects to represent

memories in a virtual environment. Krokos et al. attribute the success of the immersive

memory palace in part to the sense of presence provided by immersion, further suggest-

ing that recall should be improved in any suitably immersive experience, not just those

involving mnemonic devices such as the memory palace metaphor [17]. Additionally, a

study by Kwon et al. [19] shows that immersive graph visualization can clearly improve

user performance on simple graph interpretation tasks. While immersive technology may

have been eschewed in the past, studies such as these, in tandem with improvements in

stereoscopic displays, mark the clear entrance of immersive visualization into the realm

of practicality [16].

While keyboard and mouse are the ubiquitous standard for desktop interaction, recent

studies show intuitive interaction in virtual reality environments can outperform tradi-

tional interaction systems, such as the work by Huang et al. [16] to create a VR gesture

system for graph visualization. This is no surprise, as Büschel et al. [7] state, intuitive
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and low-effort interaction is key to leveraging the benefits of immersion, and keeping users

invested in the environment. With different methods of interaction, however, different

methods of visualization are also in order.

There has been a significant amount of research adapting virtual reality and other

immersive technology to applications in a wide breadth of fields, including biomedical

imaging [27], scientific visualization [28, 6, 9], education [31, 26] and collaboration [8].

These studies primarily focused on the application in their respective fields. While im-

mersive scientific visualization was quick to establish itself, the impact of immersion on

abstract data visualization remains largely unexplored. Indeed, very few studies have

considered the mental map in immersive graph visualization. In the past year, however,

more research into immersive visualizations with abstract data has been completed. Dro-

gemuller et al. [10] evaluate navigation techniques for 3D graph visualizations in virtual

reality. Greffard et al. [14] introduced an immersive visualization designed to preserve

the mental map. The work in this paper differs from the works above in that we instead

investigate the impact of immersion on the mental map.

Mental maps are typically used to measure the quality of a dynamic graph lay-

out [1, 24, 23, 22], and the importance of mental map preservation in dynamic layouts

has been investigated by several studies [24, 25]. Previous work by Archambault and

Purchase [2] investigates mental map preservation in a traditional (non-immersive) envi-

ronment to show it can help users orientation with tasks such as location and path finding.

Herman et al. [15] emphasize the importance of considering predictability which is also

referred to as preserving the mental map in dynamic graph layouts. As mentioned above,

immersive environments also improve navigation and orientation [5, 8], but no study has

yet combined these techniques.
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Chapter 3

Considerations for Immersive

Network Visualization

If our aim is to investigate the potential differences in mental map formation between

these two visualization conditions (traditional and immersive), we need to take several

aspects of design into careful consideration. That is, we define the mental map and how

we can discover it. We determine how to lay out the network data being visualized, to

maintain consistency between conditions. Finally, we design interaction to be simple and

intuitive for both conditions.

3.1 Mental Map

To discover the mental map, past research has taken several different approaches. Tasks

used in mental map discovery and preservation studies are classified into three different

categories by Archambault and Purchase [3] as either interpretation, memory, or change

tasks. These broad categories are outlined by Archambault and Purchase as follows.

An interpretation task asks a question that requires the user to look at the graph and

understand the structure in some way. An example of this would be to ask the user

about node degree or paths through the graph. A memory task requires the user to recall

information about the graph after viewing the visualization, for example redrawing the

graph on paper or recalling if the graph is the same as another the user has seen. A

change task asks how the graph changes over time, such as changes in degree, or changes
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in overall size.

In short, in order to discover the mental map, we want to test users’ spatial memory

and accuracy. The methods we elected to use to achieve this goal are described in the

evaluation section.

2D 3D
Figure 3.1. Network layout comparison. On the left is a 2D layout, to be used with a
traditional desktop display. On the right is a 3D layout of the same data, for use in
an immersive environment. This is the dataset (D0) used for training participants.

3.2 Graph Layout

To earnestly discern the mental map of both immersive and traditional graph visualiza-

tions, we should implement the best case of both conditions. We limit ourselves to ball-

stick representations, and use static Fruchterman-Reigngold [12] force-directed computed

layouts for both, which is shown to be an effective method of graph representation [13, 29].

We do not use an egocentric layout for the immersive environment, such as the layout

method presented by Kwon et al. [18], in order to keep as much in common between the

two representations as possible. It is possible that an egocentric layout would signifi-

cantly affect mental map formation, but it would also introduce another variable beyond

the depth dimension. What does differ between the traditional and immersive layouts is

the use of the third dimension in the immersive environments. Spatially-tracked immer-
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sive displays (such as the HTC Vive) allow us to take advantage of this dimension in a way

that a traditional display cannot [30]. A side-by-side comparison of the layouts is shown

in Fig. 3.1. Also visible in Fig. 3.1 is how the nodes and links use the same geometry

and graphical shaders to minimize the number of differences between the two implemen-

tations. It is important to note that the 2D and 3D layouts are generated separately, i.e.

the 2D layout is not simply a projection of the 3D layout.

Figure 3.2. Network with selection process shown. The green nodes (far left, far right)
are highlighted by the system to show task information to the user. The yellow node
(middle-right) is a node selected by the user. The orange node (middle-left) is being
hovered over by the user, ready to be selected. Edges connected to a node are also
highlighted while the user hovers over it with the pointer.

3.3 Interactions

To complete the tasks in our user study, participants need to select nodes and we use that

to infer the presence and quality of a mental map. To do this, we need to allow users to

select nodes and provide some helpful information to them in the process. This is shown

in Fig. 3.2.

While selection in a traditional 2D display with keyboard and mouse is a well estab-

lished and straight-forward interaction, most commonly implemented as a left-click with

the mouse, choosing a selection method for an immersive system is much more nuanced.

Since motion tracking is a common feature of commercially available stereoscopic displays
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such as the HTC Vive and Oculus Rift, we leverage the ability to select objects by “point-

ing” with a tracked controller. With a virtual laser pointer, users of our system are able

to select nodes by pressing the touch-sensitive pad. This virtual laser pointer technique

is one of the most common ways to implement selection in virtual reality, and it was cho-

sen for its accessibility and simplicity for most people with any amount of experience in

VR [4]. Our laser pointer implementation does have two quality-of-life improvements to

make the experience smoother. First, in order to reduce clutter in the visualization, the

laser pointer is only visible while the user touches lightly on the touch-pad and a selection

is counted when the user presses until an audible “click” is heard. Second, there is a

built-in tolerance for selecting distant objects. This helps significantly, as it is possible

with our system to have nodes that take up less than half a degree of the user’s field of

view, making them very difficult to select with precision. In our pilot study, we found

that a cone of approximately two degrees at the apex made selection of distant objects

much easier without causing the opposite problem of unintentionally selecting objects far

from the pointer.

To match the natural ability to scale the graph with the mouse scroll wheel in the

traditional display, we implement a pinch-zoom technique for the immersive version. To

activate the pinch-zoom, the user must press a button on both tracked hand-held con-

trollers, then stretch or contract the distance between the controllers to scale the graph

by an equivalent factor. Again, this choice is motivated mostly by intuitiveness and pop-

ularity, as ideally users should have to learn as little about VR as they would have to

about the traditional setup. Unfortunately, due to the relatively recent development of

immersive technology, it is nearly impossible to approach the intuitiveness for users whose

conception of the human-computer interface has been defined by the mouse and keyboard.

Since it would not make sense to introduce rotation to the 2D display, we also exclude

this interaction from the VR version of the system. We felt it would potentially affect the

results in an unfair way to add an additional control that users must learn for the VR

version. However, the ability to look at the graph from different directions is necessary

with the 3D layout to counteract possible occlusion issues. For this, we leverage the
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physical tracked space allowed by the immersive technology we use. By walking around

the space, users can view the graph from any angle, including from within the graph itself,

though they cannot rotate the graph inside the environment.
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Chapter 4

Evaluation: Discovering the Mental

Map

The main purpose of our study is to investigate the differences of mental map (MM)

creation and preservation in immersive virtual environments (IVE) with graph visualiza-

tion compared to standard desktop environments. To this end, we conduct a user study

with 20 participants, each given three tasks to perform with each of the two visualization

conditions.

4.1 Experiment Design

Our study is designed as a within-subjects experiment: 2 visualization conditions × 3

graph sizes × 3 tasks. We evaluate three dependent variables in the study: task completion

time, correctness rate, and number of interactions. Task completion time is counted from

start to finish of each task, not including the participants time to read the description and

learn the task. Correctness rate is the percentage of tasks correctly completed. Number

of interactions is counted as the number of node highlights, selections, and manipulations

made during a task.

4.2 Visualization Conditions

We consider two visualization conditions:

C1: Traditional (Desktop) Display with 2D graph layout. This condition uses a mouse
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for interaction and allows users to highlight nodes, select nodes, and navigate (pan

and zoom) the graph.

C2: Immersive (VR) Display with 3D graph layout. This condition uses the HTC Vive

Pro HMD with room-scale tracking, and controllers for interaction.

Both conditions use the same shaded blue sphere for all non-highlighted nodes.

Figure 4.1. Example graph layouts with five highlighted nodes, for the recall nodes
task (T2). Both images show graph D1, but the left uses a 2D layout, while the right
uses 3D. For the recall nodes task (T2), the user sees this for 30 seconds, then they
are asked which nodes were highlighted.

4.3 Tasks

We use three tasks in the study, which have been used to test participants formation of

mental maps in graph visualization [1]. The participants are given a written description

of the objective at the start of each task. The tasks are presented in the following order:

T1: Find a path. Highlight nodes that form the shortest path from node A to Node B.

The participant is shown a graph with two pre-highlighted nodes. The goal of the

task is to find a shortest path between the pre-highlighted nodes by selecting a set

of nodes that forms the shortest path. If there are multiple shortest paths, the

participant only needs to find one. Figure 3.2 also shows an example graph for this

task.
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Figure 4.2. An example graph with five missing nodes (red circles), for the find differ-
ences task (T3). The red circles are not shown in the visualizations used in the study.
The user sees this for 30 seconds, then they are asked which nodes were missing when
shown the same graph without any missing nodes.

T2: Recall marked nodes. Select the 5 nodes that were previously highlighted by the

program. Participants are shown a graph with 5 nodes pre-highlighted, which they

can explore for 30 seconds. The graph is then removed, and the participants are

shown a blank screen for 10 seconds. The graph is replaced in the same orientation,

and participants must select the nodes that were previously marked by the program

(Fig. 4.1).

T3: Find the differences. Select nodes that were not a part of the original graph. Par-

ticipants are shown a graph that they may explore for 30 seconds, then they are

shown a blank screen for 1 second. After this time, they are shown a graph with the

same layout except for 5 additional nodes that they must identify as new. A wrong

selection is weighted more heavily based on the distance from the nearest additional

node that was not properly chosen (Fig. 4.2).

4.4 Network Data

We use three different graphs with different data sizes (i.e., number of nodes and edges)

with one additional graph that was used for the training session. For C1, the graph is
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laid out to utilize the majority of a 27” display, with 16:9 aspect ratio. For C2, the graph

is initially scaled to fill a one meter cube and placed in front of the user in the room-scale

area. The data sets are:

D0: Zacharys Karate Club, this graph consists of 34 nodes and 78 edges. This graph is

used in the training session.

D1: Les Miserables, the small graph, consists of 77 nodes and 254 edges.

D2: Network Science, the medium graph, consists of 379 nodes and 914 edges. We use

the largest component of the full network.

D3: Power Grid, the large graph consists of 4,941 nodes and 6,594 edges.

4.5 Participants

We recruited 20 participants (9 males, 11 females) for our user study. The mean age of

participants was 24.35, ranging from 18 to 34 years. Every participant was familiar with

the concepts of virtual reality, and 16 participants had used a virtual reality device before

this study. Of those 16, only two participants said they had used virtual reality devices

extensively. Additionally, every participant was familiar with concept of a network, and

14 said they were familiar or experienced with network data structures. Four partici-

pants were in an undergraduate degree program, while the remaining 16 all possessed

undergraduate degrees. 14 of the 16 were also pursuing postgraduate degrees.

Five participants had normal vision, while 15 had corrected vision. Of those 15, 13

wore glasses, and all but one were able to wear their glasses comfortably within the HTC

Vive Pro HMD. The one participant that had to remove their glasses reported that they

were still able to read text and see the nodes/edges clearly in the immersive environment.

One participant had deuteranopic vision, but also reported that all colors used in the

study were easily distinguishable.

4.6 Implementation

Both visualization conditions are implemented as Unity3D applications. Participants use

the HTC Vive Pro HMD for the immersive portions of the study, and are instructed
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to stand in the middle of the room-scale environment at the start of each task, facing

toward the area where the networks would be presented. The HTC Vive Pro HMD has a

2,880 × 1,600 px (1,440 × 1,600 px per eye) AMOLED display with a 90Hz refresh rate.

The immersive environment was driven by a desktop computer with an Intel i7 6900K

CPU and dual (SLI enabled) NVIDIA GeForce GTX 1080 GPUs. The environment was

consistently rendered at 90 frames per second.

The tracked physical space for room-scale configuration measures 3.0 meters by 3.1

meters. The HTC Vive lighthouses are positioned 3.2 meters off the ground. The virtual

environment is a simple space with a floor indicating the boundary of where users can

walk. The immersive space and the traditional 2D display condition use the same dark

gray background.

4.7 Procedure

After ensuring participants are aware of possible VR/HMD issues such as sickness or

disorientation, we adjust the HMD fit and interpupillary distance (IPD) for each partic-

ipant to provide optimal viewing condition. Participants were allowed as much time as

necessary to ensure the HMD was fit comfortably without issue. None of the participants

experienced any issue with the HMD.

Participants completed a pre-study questionnaire, followed by training, the full exper-

iment, and a post-study questionnaire.

4.7.1 Questionnaire

All participants answered a two-part questionnaire. The first part covered participant de-

mographics, including age, gender, education, colorblindness, perceived spatial reasoning

skills, and VR/Visualization experience levels. The second part covered perceived task

difficulty and the impact on graph size on task difficulty, as well as free response questions

about participant preference and task completion strategies. These questions were based

on the NASA-TLX and used seven point Likert scales.
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4.7.2 Training

Participants were allowed up to 10 minutes to familiarize themselves with the visualiza-

tion conditions and their respective interfaces, in a guided tour of the features of both

applications. Each participant received training before performing each task for the first

time, using a separate dataset. This training consisted of performing the same set of tasks

of equal difficulty, with the correct answer available at the end. No data is used from the

training phase.

4.7.3 Experiment

The order of the tasks is constant for each participant, always in order from T1 to T3. The

order of the graphs increases from smallest (D0) to largest (D3), within each task. The

order of the visualization conditions was counterbalanced such that half the participants

started with C1 and the other half started with C2 to control for learning effects. For

example, a participant that starts with C1 would perform tasks in order of C1-T1-D1,

C1-T1-D2, ..., C1-T2-D1, C1-T2-D2, ..., then repeating everything with C2. The nodes

chosen to pre-highlight for tasks T1 and T2 are the constant per graph, so the difficulty

remains the same between participants.

Participants are encouraged to take short rests between tasks, for as long as they need.

The visualization is fully reset between tasks. For C2 (Virtual Reality), the participants

are instructed between tasks to re-orient themselves in the middle of the space and face

the same direction so that movement in previous tasks does not affect the completion

time or success rate of subsequent tasks.

4.8 Hypotheses

We expected the following results from our user study:

H1: For all the tasks, task completion time will be faster with traditional display (C1)

than with immersive display (C2).

H2: For the shortest path task (T1), recall task (T2) and difference finding task (T3),

C2 will outperform C1 in correctness rate.

H3: Participants will prefer immersive environments (C2) over traditional displays (C1)
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for exploring graph data.

4.9 Results

Overall, the results of the study confirm H1 and H3, while partially refuting H2. C1 is

significantly faster than C2 for T1 and T2, though no significant difference was found for

T3, this is likely due to T3 being too difficult overall, so H1 is able to be confirmed. For

correctness rate, C1 is better for T2 and T3, while C2 is better for T1. The reasons for

this are discussed in greater length in later sections, but we must at least partially refute

H2 because it did not excel in every task. An overwhelming majority of participants

(85%) favored C2 over C1 for general use, confirming H3.

Task-Dataset C1 Time C2 Time C1 Corr. C2 Corr.

T1-All 49.26 67.81 0.8056 0.9504

T1-D1 40.60 51.16 0.9917 1.0000

T1-D2 48.95 58.26 0.9250 0.9583

T1-D3 58.22 94.00 0.5000 0.8929

Task-Dataset C1 Time C2 Time C1 Dist. C2 Dist.

T2-All 31.92 50.70 0.0147 0.0686

T2-D1 19.41 32.25 0.0101 0.0576

T2-D2 27.38 54.59 0.0055 0.0732

T2-D3 48.96 65.26 0.0286 0.0749

Task-Dataset C1 Time C2 Time C1 Dist. C2 Dist.

T3-All 58.86 71.69 0.0986 0.2380

T3-D1 64.20 75.35 0.1014 0.2890

T3-D2 58.02 72.99 0.0714 0.2360

T3-D3 54.35 66.73 0.1232 0.1890

Table 4.1. Average completion times and correctness rates from the user study.

The average completion time and correctness rates are shown in Table 4.1. It is

important to note that for tasks T2 and T3, lower distance indicates better performance.
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4.9.1 Task Completion Time

Task completion time is measured with a timer built into the software created for this

experiment. The timer starts when the user is able to start interacting with a network,

and it ends when the user indicates they are finished by pressing the “Continue” button.

None of the tasks directly indicate that a user has chosen correct answers, and so some

users chose to be more meticulously than others when checking their work. As a result,

there is high variance in the time required to complete all of the tasks. We compare each

task separately because the completion time of each task varies.

On average for both conditions, participants completed T1 in 58.53s (SD = 36.51).

They completed T1 faster with C1, taking only 49.25s (SD = 24.77), and slower with

C2, taking 67.81s (SD = 43.60). A paired t-test shows that this difference is statistically

significant (p = 0.00041). This result is shown in Fig. 4.3a.

T1 completion time for individual data sets (D1, D2, D3) is shown in Fig. 4.3b, and

we compare pairs with t-tests using Bonferroni correction. For D1 and D2, participants

did not complete T1 significantly faster with either C1 or C2 (pD1 = 0.092, pD3 = 0.23).

For D3, participants completed T1 significantly faster with C1 than with C2, having

average completion times of 58.22s (SD = 23.79) and 94.00s (SD = 51.80), respectively

(p = 0.0033).

On average for both conditions, participants completed T2 in 41.30s (SD = 28.25).

They completed T1 faster with C1, taking only 31.92s (SD = 21.42), and slower with

C2, taking 50.70s (SD = 31.18), which is shown by t-test to be statistically significant

(p = 2.3e− 07). This result is shown in Fig. 4.3c.

Differences between T2 completion time for individual data sets, is shown in Fig. 4.3d,

and we compare pairs with t-tests using Bonferroni correction. For D1, participants

completed T1 significantly faster with C1 than with C2, having average completion times

of 19.41s (SD = 11.88) and 32.25s (SD = 18.12), respectively (p = 0.00010). For D2,

participants completed T1 significantly faster with C1 than with C2, having average

completion times of 27.38s (SD = 13.54) and 54.59s (SD = 30.30), respectively (p =

0.00084). For D3, participants completed T1 significantly faster with C1 than with C2,
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having average completion times of 48.96s (SD = 24.65) and 65.25s (SD = 34.26),

respectively (p = 0.014).

The difference in completion time for T3 is statistically significant (p = 0.020) between

C1 and C2 overall, with C1 having mean completion time of 58.86s (SD = 34.54) and C2

having 71.69s (SD = 54.97). However, the variance within data sets is such that there

is no significant difference in completion time for individual pairs (Fig. 4.3e-f). Possible

reasons for this are discussed in later sections.

4.9.2 Correctness Rate

Correctness rate is measured differently for each task. For T1 (shortest path task), the

correctness is calculated as a composite metric. The participants were asked to find the

shortest path between two highlighted nodes, and so the correct answer would be any

complete path that is the same length as the shortest path between those two nodes.

Thus, we use the shortest path length as a fraction of the participant’s chosen path when

the participant makes a complete path, and a correctness of zero is used for incomplete

paths, shown in the following equation.

correctness =
length(shortest path)

length(selected path)
(4.1)

With this method, the best correctness score a participant can receive is one, and any

path that is complete but contains extra nodes will be between zero and one, approaching

zero as more unnecessary nodes are added.

Overall for T1, participants succeeded in making a complete path in 89.17% of all trials,

and that path was shortest in 80.83% of all trials. Participants performed significantly

better in C2 with an average correctness rate of 0.95 out of 1.0 (SD = 0.185), compared

to the average correctness rate with C1, at 0.81 (SD = 0.387). A t-test confirms that this

result is significant (p = 0.0065). This is shown in Fig. 4.4a.

Significant differences also exist between T1 trials of data set D3 and the other data

sets, shown in Fig. 4.4b, and we compare pairs with t-tests using Bonferroni correction.

The average correctness rate for T1 with D3 and C1 is only 0.50 (SD = 0.51), which is

significantly lower than participants using C1 with the other two data sets (p = 0.0052
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Figure 4.3. Summary of completion time for all tasks and data sets. (a) shows the
average T1 completion time for each visualization condition, which is broken into
individual data sets in (b). The same is shown below for T2 in (c) and (d), then again
for T3 in (e) and (f).

20



T1

0.00

0.25

0.50

0.75

1.00

2D 3D
(a)

C
or

re
ct

n
es

s

0.00

0.25

0.50

0.75

1.00

D1 D2 D3
(b)

C
or

re
ct

n
es

s

2D

3D

T2

0.000

0.025

0.050

0.075

2D 3D
(c)

A
v
g.

D
is

ta
n

ce
(m

)

0.000

0.025

0.050

0.075

D1 D2 D3
(d)

A
v
g.

D
is

ta
n
ce

(m
)

2D

3D

T3

0.0

0.1

0.2

0.3

2D 3D
(e)

A
v
g.

D
is

ta
n
ce

(m
)

0.0

0.1

0.2

0.3

D1 D2 D3
(f)

A
v
g.

D
is

ta
n
ce

(m
)

2D

3D

Figure 4.4. Summary of correctness rate for all tasks and data sets. (a) shows the
average T1 correctness for each visualization condition, which is broken into individual
data sets in (b). The same is shown below for T2 in (c) and (d), then again for T3 in
(e) and (f). Note: Higher correctness is better for T1, while lower average distance is
better for T2 and T3.
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and p = 0.0252 for D1 and D2, respectively). The reason for this outlier in the data

sets is observed to be occlusion due to edge crossing and is discussed in the next section.

Participants also performed better with C2 than C1 for D3, with an average correctness

rate of 0.89 (SD = 0.31) with C2 (p = 0.0079).

For T2 (recall nodes task) and T3 (find differences task), the correctness rate is cal-

culated the same way because the goal of both tasks is for the participant to select some

number of nodes, and there is only one correct answer for each task. For these tasks, we

report the number of nodes that users chose correctly from memory.

Additionally, we provide a more interesting metric that represents on a continuous

scale how close, in a spatial sense, participants were to the correct answer. To do this, we

calculate the distance between each of the participants’ answers and the nearest correct

node, and take the average. Given as:

d(u, t) =
‖u− t‖

dt
, dt =

Σv∈V ‖v − t‖
|V |

(4.2)

where V is the set of nodes in the network, u is a given node selected by the partici-

pant, and t is the target node, or nearest correct node. The distance is shown above as

d(u, t). Thus, a correct node will have a distance of zero, and incorrect nodes will have a

positive decimal distance, with a larger distance revealing that a participant remembered

less about the position of the node they were attempting to indicate. The distance is

normalized such that the average distance of a node from the nearest correct answer is

the same for the 2D and 3D layouts. The normalization factor is shown in the above

equations as dt. This makes it possible to fairly compare distances from the two different

spaces: immersive 3D and traditional 2D.

Participants correctly identified 62.67% of marked nodes in T2, and the average dis-

tance of guesses from the correct node was 0.0417 (SD = 0.0578) for all conditions and

data sets. Participants performed T2 better with C1 than C2, correctly identifying 71.00%

of nodes with C1, and only 54.33% of nodes with C2. Additionally, participants using C1

were able to guess closer to nodes even if their answer wasn’t correct, with an average

distance of 0.015 (SD = 0.024), which is depicted in Fig. 4.4c. Participants using C2 did

not perform as well, with an average distance of 0.069 (SD = 0.068). This difference in
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correctness is statistically significant (p = 1.6e− 07).

Comparing T2 correctness between data sets shows that C1 is consistently better

for the small and medium data sets, but the larger data set does not have a significant

difference (Fig. 4.4d). We compare pairs with t-tests using Bonferroni correction. T2

average correctness with D1 was better with C1 than C2, with average distances of 0.010

(SD = 0.014) and 0.058 (SD = 0.056), respectively (p = 0.00052). T2 average correctness

with D2 was also better with C1 than with C2, with average distances of 0.0055 (SD =

0.0086) and 0.073 (SD = 0.075), respectively (p = 0.00050). T2 average correctness

with D3 also has a statistically significant difference, C1 had an average distance of 0.029

(SD = 0.035), while C2 had an average distance of 0.075 (SD = 0.075), showing an

advantage for C1 (p = 0.024).

In T3, participants correctly identified only 8.33% of the additional nodes. This was

higher for C1 alone, with which participants correctly identified 11.89% of additional

nodes, and lower for C2, with which participants correctly identified only 7.67%. Due

to the low number of correctly selected nodes, the average distance of the participants’

guesses is much more accurate for determining how the viewing conditions affected per-

formance. Participants achieved an average distance of 0.099 (SD = 0.078) for T3 with

C1, while participants did not do as well for T3 with C2, with an overall average distance

of 0.24 (SD = 0.16), which is shown also in Fig. 4.4e. This difference in correctness rate

is statistically significant (p = 3.1e− 09).

Comparing T3 correctness between data sets shows the same result as that of T2:

that C1 is consistently better for the small and medium data sets, but the larger data set

does not have a significant difference (Fig. 4.4f), shown by pairwise t-tests. T3 average

distance with D1 was better with C1 than with C2, at 0.10 (SD = 0.065) for C1 and

0.29 (SD = 0.17) for C2 (p = 4.5e − 05). T3 average distance with D2 was also better

with C1 compared to C2, at 0.071 (SD = 0.045) for C1 and 0.24 (SD = 0.15) for C2

(p = 4.8e− 05). T3 average distance with D3 was not significantly lower with either C1

or C2 (p = 0.053).
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Figure 4.5. User responses to questions about task difficulty (a) and impact of graph
size of difficulty (b). A positive result for (a) indicates that tasks were easier with C2
than C1. A positive result for (b) indicates that graph size had a larger impact on
difficulty with C2 than C1. User responses to these questions were not found to be
statistically significant.

4.9.3 User Feedback

Participants were asked to complete pre- and post-study questionnaires that provide more

insight into what each person experienced between the two visualization conditions.

Seventeen out of the twenty participants (85%) that used the system answered that

they preferred C2 (Immersive 3D Graph Visualization) over C1 (Traditional 2D Graph

Visualization), showing a clear majority.

Users may have slightly favored C2 for T1 and T3, and preferred C1 for T2 in terms

of difficulty, but the user reported difficulties were not found to be statistically significant

(Fig. 4.5a). It is clear, however, that T1 was the easiest task, T3 was the hardest, while

T2 was somewhere in between. Additionally, we were not able to discover any significant

difference between C1 and C2 concerning user responses to the question of how much

graph size impacted the difficulty of the tasks (p > 0.05, Fig. 4.5b).

To the question of what they liked about either C1 or C2, the following lists some of

the participants’ most common and insightful responses, starting with most the frequent

sentiments:

• “[VR] makes it easier to grasp the structure.”

• “3D graphs are easier [and/or] more interesting to explore”

• “Edge occlusion was much easier to resolve with in 3D than 2D space with VR.”

• “Node selection is too much effort in VR”
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• “2D layout is better for quick overview and memory”
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Chapter 5

Discussion

The results suggest that one viewing condition did not dominate the other in terms of per-

formance. Immersive environments performed better with path-finding, while traditional

displays triumphed in the two short-term memory and change based tasks.

Finding the shortest path was significantly easier with the VR version, and this is the

only task that VR excelled with. A significant portion of this can be attributed to the

nature of 3D layouts not having any problem with edge-crossings. Since the 3D layouts

used in the immersive space were completely devoid of any crossed edges, it was never

the case that a user would be unable to tell whether the path they had highlighted was

complete or not, as each edge was easy to follow through the environment from start

to finish. In the case of the traditional 2D environment, and especially with the large

data set (D3), it was common for edges to not only cross other edges, but also travel

through nodes, making it unclear whether it was a single edge that went through the

node, or two edges that happened to connect to the same node at opposite sides. If not

for the edge-highlighting that was built into the system, it would be obvious that a 3D

layout should do much better and any other factors would likely be insignificant; however,

there is likely more at play here. The edge-highlighting allowed participants to see very

precisely if two nodes were connected simply by hovering over it, and all participants were

instructed in the use of this feature. In spite of this, participants with the 2D version

still marked incomplete paths and complete but non-optimal paths more frequently than

participants with the VR version. In short, the immersive experience helped participants
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complete the path finding task more accurately beyond the 3D nature of the layout. This

could be evidence of the natural formation of a 3D mental map that helped participants

understand the graph and connections between nodes better than could happen in the

2D traditional display environment.

Participants performed more slowly with immersive 3D, in most regards, compared to

the traditional 2D setup. Part of this may have been due to participants’ lack of familiarity

with the controls and virtual environment. However, from the data collected about user

movement and participant comments, it seems that the immersive environment also lends

itself to fastidiousness. Participants in the immersive environment took more time not

necessarily because they didn’t find the answer as quickly, but because they often spent

time meticulously inspecting their work before continuing to the next open-ended task,

something they did not do with the traditional visualization conditions. This may suggest

that VR and other immersive technologies are best suited for more in-depth or abstract

tasks than the ones used in this experiment.

The mental map we discovered through this experiment seems to be limited to what

is essentially a mental image. The simplicity of the mental map, and volatility, seems due

to the short time frame of all the tasks. Since participants were given only 30 seconds to

scrutinize each visualization, they only had time to construct a relatively crude mental

map. This mental map was too fragile for immersive space, based on the overall far

lower correctness in immersive 3D for both the recall nodes and find differences tasks.

Users mentioned on several occasions that after having changed their perspective in the

immersive environment, they lost their memory of the locations of marked nodes in the

recall nodes task. We can conclude from the results that if it is possible to have a mental

map that accurately represents a 3D environment, it requires more time and interaction

to build than this experiment provided.

The difficulty of the find differences task seems to have contributed to some unex-

pected results. Users answered overwhelmingly that this task was the hardest. It is clear

that some participants gave up entirely on completing the task for the largest data set, by

either selecting randomly or not selecting any nodes. Despite a few participants exhibiting
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this behavior for both the VR and desktop versions, the results still indicate that overall

the desktop version was easier, though this difficulty is likely the reason that there is no

significant difference between completion time for either visualization condition. Addi-

tionally, for the recall nodes task, we did not find a significant difference in correctness

rate. This may be due to either C1 losing its advantage when there are several thousand

nodes, or the task being too difficult with networks of that size (>1000 nodes).
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Chapter 6

Conclusion

Literature on the mental map in graph visualization is substantial but sparsely populated

when it comes to the immersive design space, despite the rapid development of immersive

visualization technologies. This work attempts to answer some questions about the mental

maps users form under different circumstances, and how we can leverage this knowledge

as creators of visualizations. While immersive 3D showed more success with path-finding,

traditional 2D visualization has proven superior for memorization and dynamic graph

tasks, at least for the depth of immersion we were able to reach.

The results of this experiment highlight the volatility and vulnerability of user’s con-

centration and mental state while completing graph visualization tasks and, by extension,

while interpreting real-world data. Additionally, it suggests that immersive technology

may allow deeper and more natural understanding of abstract data structures, though it

is more carefully considered and must be precisely designed.

To further investigate the use of immersive technology in understanding abstract data

structures, such as graphs, the next step is to delve deeper into the individual processes

for observing and understanding immersive environments with longer and more detailed

experiments. These are processes such as how users mentally store relative positions and

directions, and how they are able to turn that into an understanding of the data presented.

Investigating the mental capabilities of humans in immersive environments will help us

design better systems that more effectively leverage human perception.
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